青木 義満 (アオキ ヨシミツ)

Aoki, Yoshimitsu

写真a

所属(所属キャンパス)

理工学部 電気情報工学科 (矢上)

職名

教授

HP

特記事項

教授

外部リンク

総合紹介 【 表示 / 非表示

  • ・1999年04月-2001年03月 早稲田大学理工学部 応用物理学科助手  橋本周司教授の研究室において、顔画像認識・合成、工業用精密画像計測、  ヒューマノイドロボットの視覚システムに関する研究に従事. ・2002年04月-2005年03月 芝浦工業大学工学部情報工学科 専任講師(青木研究室発足)  2005年04月-2008年3月 芝浦工業大学工学部情報工学科 准教授  顔形状・動作の3次元画像解析技術の医学・歯学応用  衛星画像他リモートセンシングデータの統合活用に関する研究  道路交通画像システム,高精度画像計測システムに関する研究等に従事.  ※芝浦工業大学にて、7年間で約90名の学生の研究指導を担当 ・2008年04月-現在 慶應義塾大学理工学部電子工学科 准教授  人物を対象とした画像計測・認識技術、及び応用システムに関する研究.  応用先として,セキュリティ,マーケティング,医療・福祉,美容,インターフェース,エンターテイメント,自動車,等を視野に入れ,幅広い産業応用を目指す.  人の認知機構や感性を考慮したメディア理解技術とその応用,新しい視覚センサ,ロバスト画像特徴量に関する研究等に従事. ・2013年2月-現在 株式会社イデアクエスト 取締役兼任  慶應理工発画像センシング技術の医療分野での実用化を目指している.

経歴 【 表示 / 非表示

  • 1999年04月
    -
    2002年03月

    早稲田大学, 理工学部 , 助手

  • 2002年04月
    -
    2005年03月

    芝浦工業大学 , 工学部 情報工学科, 専任講師

  • 2005年04月
    -
    2008年03月

    芝浦工業大学, 工学部 情報工学科, 助教授(2007より准教授)

  • 2008年04月
    -
    2017年03月

    慶應義塾大学, 理工学部, 准教授

  • 2013年02月
    -
    2017年03月

    株式会社イデアクエスト, 取締役

全件表示 >>

学歴 【 表示 / 非表示

  • 1996年03月

    早稲田大学, 理工学部, 応用物理学科

    大学, 卒業

  • 1998年03月

    早稲田大学, 理工学研究科, 物理学及応用物理学専攻

    大学院, 修了, 修士

  • 2001年02月

    早稲田大学, 理工学研究科, 物理学及応用物理学専攻

    大学院, 修了, 博士

学位 【 表示 / 非表示

  • 博士(工学), 早稲田大学, 課程, 2001年02月

 

研究分野 【 表示 / 非表示

  • ものづくり技術(機械・電気電子・化学工学) / 計測工学 (Measurement Engineering)

  • 情報通信 / データベース (メディア情報学・データベース)

  • 情報通信 / 知覚情報処理 (知覚情報処理・知能ロボティクス)

  • ライフサイエンス / 医用システム (Medical Systems)

 

著書 【 表示 / 非表示

  • 画像センシングのしくみと開発がしっかりわかる教科書

    青木義満,輿水大和 他, 技術評論社, 2023年06月,  ページ数: 239

  • 顔の百科事典

    丸善出版, 2015年09月

    担当範囲: 7 章 コンピュータと顔 ─顔の情報学─

     概要を見る

    顔を見ない日はないというくらい、「顔」は私達にとってあたり前の存在ですが、私達は一体どれほど「顔」のことを知っているのでしょうか。そのような「顔」を総合的に研究するのが「顔学」です。 顔学には、動物学や人類学をはじめ、解剖学、生理学、歯学、心理学、社会学の文化的な対象として扱われるだけでなく、演劇や美術などの芸術学、コンピュータの分野では、情報学、さらに、美容学、人相学など、実に多様な学問分野と関係しています。 本書では、私達と切り離すことのできない「顔」の、歴史的・文化的・社会的・科学的側面を中項目の事典としてまとめられていることにより、多様な分野を横断する知識にも容易にアクセスが可能になっています。 日本顔学会創立20周年記念出版として、「顔学」について体系化を行った、初めての百科事典です。

  • 三次元画像センシングの新展開

    青木 義満, NTS, 2015年05月

    担当範囲: 第5章1節 色情報とレンジデータのフュージョンによる高分解能三次元レンジセンサの開発

  • 電気学会125年史

    青木義満,秦 清治, 電気学会, 2013年05月

  • 電気学会125年史

    青木 義満, 電気学会, 2013年05月

全件表示 >>

論文 【 表示 / 非表示

  • Proto-Adapter: Efficient Training-Free CLIP-Adapter for Few-Shot Image Classification

    Kato N., Nota Y., Aoki Y.

    Sensors (Sensors)  24 ( 11 )  2024年06月

     概要を見る

    Large vision-language models, such as Contrastive Vision-Language Pre-training (CLIP), pre-trained on large-scale image–text datasets, have demonstrated robust zero-shot transfer capabilities across various downstream tasks. To further enhance the few-shot recognition performance of CLIP, Tip-Adapter augments the CLIP model with an adapter that incorporates a key-value cache model constructed from the few-shot training set. This approach enables training-free adaptation and has shown significant improvements in few-shot recognition, especially with additional fine-tuning. However, the size of the adapter increases in proportion to the number of training samples, making it difficult to deploy in practical applications. In this paper, we propose a novel CLIP adaptation method, named Proto-Adapter, which employs a single-layer adapter of constant size regardless of the amount of training data and even outperforms Tip-Adapter. Proto-Adapter constructs the adapter’s weights based on prototype representations for each class. By aggregating the features of the training samples, it successfully reduces the size of the adapter without compromising performance. Moreover, the performance of the model can be further enhanced by fine-tuning the adapter’s weights using a distance margin penalty, which imposes additional inter-class discrepancy to the output logits. We posit that this training scheme allows us to obtain a model with a discriminative decision boundary even when trained with a limited amount of data. We demonstrate the effectiveness of the proposed method through extensive experiments of few-shot classification on diverse datasets.

  • Event-Based Background-Oriented Schlieren

    Shiba S., Hamann F., Aoki Y., Gallego G.

    IEEE Transactions on Pattern Analysis and Machine Intelligence (IEEE Transactions on Pattern Analysis and Machine Intelligence)  46 ( 4 ) 2011 - 2026 2024年04月

    共著,  ISSN  01628828

     概要を見る

    Schlieren imaging is an optical technique to observe the flow of transparent media, such as air or water, without any particle seeding. However, conventional frame-based techniques require both high spatial and temporal resolution cameras, which impose bright illumination and expensive computation limitations. Event cameras offer potential advantages (high dynamic range, high temporal resolution, and data efficiency) to overcome such limitations due to their bio-inspired sensing principle. This article presents a novel technique for perceiving air convection using events and frames by providing the first theoretical analysis that connects event data and schlieren. We formulate the problem as a variational optimization one combining the linearized event generation model with a physically-motivated parameterization that estimates the temporal derivative of the air density. The experiments with accurately aligned frame- and event camera data reveal that the proposed method enables event cameras to obtain on par results with existing frame-based optical flow techniques. Moreover, the proposed method works under dark conditions where frame-based schlieren fails, and also enables slow-motion analysis by leveraging the event camera's advantages. Our work pioneers and opens a new stack of event camera applications, as we publish the source code as well as the first schlieren dataset with high-quality frame and event data.

  • Synthetic Document Images with Diverse Shadows for Deep Shadow Removal Networks

    Matsuo Y., Aoki Y.

    Sensors (Sensors)  24 ( 2 )  2024年01月

    ISSN  14248220

     概要を見る

    Shadow removal for document images is an essential task for digitized document applications. Recent shadow removal models have been trained on pairs of shadow images and shadow-free images. However, obtaining a large, diverse dataset for document shadow removal takes time and effort. Thus, only small real datasets are available. Graphic renderers have been used to synthesize shadows to create relatively large datasets. However, the limited number of unique documents and the limited lighting environments adversely affect the network performance. This paper presents a large-scale, diverse dataset called the Synthetic Document with Diverse Shadows (SynDocDS) dataset. The SynDocDS comprises rendered images with diverse shadows augmented by a physics-based illumination model, which can be utilized to obtain a more robust and high-performance deep shadow removal network. In this paper, we further propose a Dual Shadow Fusion Network (DSFN). Unlike natural images, document images often have constant background colors requiring a high understanding of global color features for training a deep shadow removal network. The DSFN has a high global color comprehension and understanding of shadow regions and merges shadow attentions and features efficiently. We conduct experiments on three publicly available datasets, the OSR, Kligler’s, and Jung’s datasets, to validate our proposed method’s effectiveness. In comparison to training on existing synthetic datasets, our model training on the SynDocDS dataset achieves an enhancement in the PSNR and SSIM, increasing them from 23.00 dB to 25.70 dB and 0.959 to 0.971 on average. In addition, the experiments demonstrated that our DSFN clearly outperformed other networks across multiple metrics, including the PSNR, the SSIM, and its impact on OCR performance.

  • Secrets of Event-based Optical Flow, Depth and Ego-motion Estimation by Contrast Maximization

    Shiba S., Klose Y., Aoki Y., Gallego G.

    IEEE Transactions on Pattern Analysis and Machine Intelligence (IEEE Transactions on Pattern Analysis and Machine Intelligence)  2024年

    ISSN  01628828

     概要を見る

    Event cameras respond to scene dynamics and provide signals naturally suitable for motion estimation with advantages, such as high dynamic range. The emerging field of event-based vision motivates a revisit of fundamental computer vision tasks related to motion, such as optical flow and depth estimation. However, state-of-the-art event-based optical flow methods tend to originate in frame-based deep-learning methods, which require several adaptations (data conversion, loss function, etc.) as they have very different properties. We develop a principled method to extend the Contrast Maximization framework to estimate dense optical flow, depth, and ego-motion from events alone. The proposed method sensibly models the space-time properties of event data and tackles the event alignment problem. It designs the objective function to prevent overfitting, deals better with occlusions, and improves convergence using a multi-scale approach. With these key elements, our method ranks first among unsupervised methods on the MVSEC benchmark and is competitive on the DSEC benchmark. Moreover, it allows us to simultaneously estimate dense depth and ego-motion, exposes the limitations of current flow benchmarks, and produces remarkable results when it is transferred to unsupervised learning settings. Along with various downstream applications shown, we hope the proposed method becomes a cornerstone on event-based motion-related tasks. Code is available at <uri>https://github.com/tub-rip/event_based_optical_flow</uri>

  • Improving Perceptual Loss with CLIP for Super-Resolution

    Ohtani G., Kataoka H., Aoki Y.

    Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering (Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering)  90 ( 2 ) 217 - 223 2024年

    ISSN  09120289

     概要を見る

    Perceptual loss, calculated by VGG network pre-trained on ImageNet, has been widely employed in the past for super-resolution tasks, enabling the generation of photo-realistic images. However, it has been reported that grid-like artifacts frequently appear in the generated images. To address this problem, we consider that large-scale pre-trained models can make significant contributions to super-resolution across different scenes. In particular, by combining language, those models can exhibit a strong capability to comprehend complex scenes, potentially enhancing super-resolution performance. Therefore, this paper proposes new perceptual loss with Contrastive Language-Image Pre-training (CLIP) based on Vision Transformer (ViT) instead of VGG network. The results demonstrate our proposed perceptual loss can generate photorealistic images without grid-like artifacts.

全件表示 >>

KOARA(リポジトリ)収録論文等 【 表示 / 非表示

総説・解説等 【 表示 / 非表示

  • 密集領域での動作を理解するためのハイブリッド型映像解析

    大内一成,小林大祐,中州俊信,青木義満

    東芝レビュー (東芝)  72 ( 4 ) 30 - 34 2017年09月

    機関テクニカルレポート,技術報告書,プレプリント等, 共著

  • 画像センシング技術によるチームスポーツ映像からのプレー解析

    林 昌希,青木 義満

    映像情報メディア学会誌 (映像情報メディア学会)  70 ( 5 ) 710 - 714 2016年09月

    記事・総説・解説・論説等(学術雑誌), 共著

  • 人物行動認識・理解のための画像センシング技術と応用

    青木 義満

    非破壊検査 (日本非破壊検査協会)  65 ( 6 ) 254 - 260 2016年06月

    記事・総説・解説・論説等(学術雑誌), 単著

  • パターン計測技術の深化と広がる産業応用 -総論-

    青木 義満

    計測と制御 (計測自動制御学会)  53 ( 7 ) 555 - 556 2014年07月

    記事・総説・解説・論説等(学術雑誌), 単著

研究発表 【 表示 / 非表示

  • 自由な表現と被写体の質感を維持するメイク生成モデルの開発

    帯金駿, 田川晴菜, 中川雄介, 中村理恵, 青木義満

    第27回日本顔学会大会(フォーラム顔学2022), 

    2022年09月

    口頭発表(一般)

  • 不確実性を考慮したセマンティックマップの生成

    竹中悠,森巧磨,谷口恭弘,青木義満

    第27回 知能メカトロニクスワークショップ, 

    2022年09月

    口頭発表(一般)

  • 重要パッチ選択に基づく効率的動画認識

    鈴木 智之, 青木 義満

    第25回 画像の認識・理解シンポジウム(MIRU2022), 

    2022年07月

    ポスター発表

  • 音響信号を用いた人物の3次元姿勢推定

    川島穣, 柴田優斗, 五十川麻理子, 入江豪, 木村昭悟, 青木義満

    第25回 画像の認識・理解シンポジウム(MIRU2022), 

    2022年07月

    口頭発表(一般)

  • 完全合成画像での学習による文書画像の影除去

    松尾祐飛,青木義満

    第28回画像センシングシンポジウム(SSII2022), 

    2022年06月

    ポスター発表

全件表示 >>

知的財産権等 【 表示 / 非表示

  • 画像処理装置,画像処理プログラムおよび画像処理方法

    出願日: 2019-105297  2019年06月 

    共同

  • 危険度推定装置,危険度推定方法及び危険度推定用コンピュータプログラム

    出願日: 特願2015-005241  2015年01月 

    発行日: 特許第6418574号  2018年10月

    特許権, 共同

受賞 【 表示 / 非表示

  • HCGシンポジウム2018 特集テーマセッション賞

    秋月 秀一(慶大)・大木 美加・バティスト ブロー・鈴木 健嗣(筑波大)・青木 義満(慶大), 2018年12月, 電子情報通信学会ヒューマンコミュニケーショングループ, 床面プロジェクションに伴う動的な環境変化に対応する人物追跡技術

    受賞区分: 国内学会・会議・シンポジウム等の賞

  • HCGシンポジウム2018 優秀インタラクティブ発表賞

    秋月 秀一(慶大)・大木 美加・バティスト ブロー・鈴木 健嗣(筑波大)・青木 義満(慶大), 2018年12月, 電子情報通信学会ヒューマンコミュニケーショングループ, 床面プロジェクションに伴う動的な環境変化に対応する人物追跡技術

    受賞区分: 国内学会・会議・シンポジウム等の賞

  • 精密工学会沼田記念論文賞

    加藤直樹,箱崎浩平,里雄二,古山純子,田靡雅基,青木ヨシミツ, 2018年03月, 精密工学会, 畳み込みニューラルネットワークによる距離学習を用いた動画像人物再同定

    受賞区分: 国内学会・会議・シンポジウム等の賞

  • IWAIT2018 Best Paper Award

    Ryunosuke Kurose, Masaki Hayashi, Yoshimitsu Aoki, 2018年01月, IWAIT2018

    受賞区分: 国内外の国際的学術賞

  • IES-KCIC2017 Best Paper Award

    Siti Nor Khuzaimah Amit, Yoshimitsu Aoki, 2017年09月, IEEE Indonesia Section, Disaster Detection from Aerial Imagery with Convolutional Neural Network

    受賞区分: 国内外の国際的学術賞

全件表示 >>

 

担当授業科目 【 表示 / 非表示

  • 電気情報工学セミナーⅡ

    2024年度

  • 電気情報工学輪講

    2024年度

  • 電気情報工学実験第2

    2024年度

  • 総合デザイン工学課題研究

    2024年度

  • 画像工学

    2024年度

全件表示 >>

 

社会活動 【 表示 / 非表示

  • 画像情報教育振興協会

    2013年07月
    -
    2015年03月
  • 独立行政法人 交通安全環境研究所

    2009年12月
    -
    2012年03月

所属学協会 【 表示 / 非表示

  • International Symposium on Optomechatronic Technologies 2013, 

    2013年04月
    -
    2013年11月
  • International Workshop on Advanced Image Technology 2013(IWAIT2013), 

    2013年01月
    -
    2013年09月
  • 11th International Conference on Quality Control by Artificial Vision(QCAV2013), 

    2012年12月
    -
    2013年05月
  • 3rd International Conference on 3D Body Scanning Technologies, 

    2012年06月
    -
    2012年10月
  • 計測自動制御学会パターン計測部会, 

    2012年04月
    -
    継続中

全件表示 >>

委員歴 【 表示 / 非表示

  • 2017年04月
    -
    継続中

    NEDO技術委員, NEDO

  • 2016年07月
    -
    2016年11月

    Optics & Photonics Japan 2016 推進委員, 日本光学会

  • 2016年07月
    -
    2016年12月

    Program committee member, International Workshop on Human Tracking and Behavior Analysis 2016

  • 2015年09月
    -
    2016年08月

    第22回画像センシングシンポジウム 実行委員長, 画像センシング技術研究会

  • 2014年09月
    -
    2015年08月

    第21回画像センシングシンポジウム 実行委員長, 画像センシング技術研究会

全件表示 >>