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Abstract

The qubits can be entangled when they interact with a common Ohmic reservoir. We analyze how the reservoir-
induced entanglement of qubits can be observed as the beat signal in the decay curve of the macroscopic polarization.
The origin of this effect is the Lamb phase shift on the qubit array. We quantify the amount of the reservoir-induced
entanglement and show how to experimentally evaluate it from the decay curve of the macroscopic polarization. We
discuss how the beat signal can be discriminated from the other kinds of beat signals. We also show that our analysis

can be used to estimate the reservoir characteristics.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Decoherence; Free induction decay; Quantum beat; Entanglement

1. Introduction

The decoherence of two-state system (qubit) has
recently been major concern in the context of
quantum information processing. A commonly
used model is the spin-boson Hamiltonian which
yields a good approximation in most cases. In
most of previous investigations, the qubits are
assumed to couple independently to separate
reservoirs. It is, however, often the case where
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each qubit interacts with a common reservoir
resulting in the cooperative decoherence [1-3].
Such a decoherence was extensively studied in the
case of two-qubit in Ref. [3], clarifying that there
exist the coherence-preserving states and the
super-decoherence states. In Refs. [4,5], it was
shown that the qubits can be entangled by the
interaction via a common reservoir even if they do
not interact directly with each other, shedding new
light on the creation mechanism of entanglement
for quantum information processing purposes.
While Ref. [5] deals with a single-mode thermal
reservoir, Ref. [4] assumes a thermal reservoir
with many modes. The fact that the qubit can
be entangled even in the latter case is rather
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surprising since interactions with infinitely many
modes lead typically to very rapid decoherence,
and hence to a classical mixed state without any
quantum entanglement. In Ref. [4], a model is also
proposed to observe this effect. The model consists
of two double-well quantum dots (QDs) enclosed
in a cavity, where two QDs interact only with the
TM modes of the cavity. It is, however, not clear
how to measure the entanglement quantitatively in
practical experimental settings. In the other pre-
vious studies [1-3], the detail of dynamics and the
connection to practical experiments have not been
clarified either.

In this paper, we study the dynamics of a multi-
qubit system interacting with a common reservoir
characterized by the Ohmic spectrum of infinitely
many modes. We show how one can experimen-
tally quantify the reservoir-induced entanglement
between qubits by observing the decay of the
macroscopic polarization which is accessible by
standard techniques such as the four-wave mixing
spectroscopy for excitons, NMR for spins, and so
on. In contrast to the case where the qubits couple
independently to separate reservoirs, the decay of
the macroscopic polarization exhibits oscillations,
i.e. a beat signal reflecting the entanglement
between qubits. We clarify the relation between
this beat signal and the amount of the reservoir-
induced entanglement in the two-qubit case. The
mechanism causing the beat signal can be ex-
plained in terms of the Lamb phase shift, which
was originally found in atomic physics. We discuss
how to discriminate this beat signal from other
kinds of beat signals encountered commonly in
solid state systems. We also demonstrate that our
analysis will be useful to estimate the reservoir
characteristics such as reservoir boson spectrum
and coherent length (time) of reservoir bosons.

2. Calculation

We assume that the following interaction
pictured spin-boson Hamiltonian of L qubits

L
Hop(t) = h Z 1 (0B, + e, (1)
j=1 P

where gll(1) = g,e 77" is the coupling function
between the ]th qubit at location r; described by
the Pauli spin-z operator o[’ and the reservoir
boson with the momentum p and the angular
frequency €, described by the creation operator
B). We assume that the qubits are initially in the
separable tensor product state the ground state
|0 >, and the reservoir is in the thermal state, being
separated from the qubits,
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where kg and T are Boltzmann constant and
temperature, respectively, and 7, = B B The
qubits are first excited by the m/2 pulse W1th the
wave number vector k at time ¢ = 0. The qubits
and the reservoir then evolve according to the
unitary operator [6]

L
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We introduce the macroscopic polarization operator

L

S.=2 8 G, @

where g and v; describe the wave number vector
of the polarization and the energy separation
of jth qubit, respectively. The radiation intensity
due to this polarization observed in optical spectro-
scopy is

|PO(g, 1) = [Tr{S, pop ()] ™"
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where
9, h<p
Fzzzl;g—i 1 —costt)cothm, (5b)
Qjo = @,cosp-rjq. (5¢)
P

19,1 .
Op = —5-(Qpt — sin 1), (5d)

2,
fo=-exp L—i(k —q)-ro+i(vg — a))tj , (5e)

and rjg = r; — rg and gl = g,e™7".

Now let us consider a situation where all qubits
exist within a range much shorter compared with
the coherence length, taking an approximation
Ojo > O =3 ,0,asrj = 0in Eq. (5¢), and one
observes the polarization radiation in the direction
at k = ¢. The radiation intensity is then given by

I\2
|PD (1)) = <§) exp(—4I)cos? D40, (6)
Here the Ohmic spectrum

1(Q) = ; 32 — 2))lg,|> = apQexp (— Q%) (7
is assumed for the reservoir, where «p is the
dimensionless coupling constant. €, is the cut-off
frequency. Fig. 1 shows the macroscopic polariza-
tion normalized at ¢t = 0 in the case of L qubits. As
seen, increasing the number of qubits, the polar-
ization oscillates and its peak width becomes
narrower keeping the same period. Thus the decay
of the macroscopic polarization is accelerated as L
gets larger. This means that the other qubits are to
be regarded as an additional environment coupled
with each other via a common reservoir. This beat
signal is governed by the factor cos*£~4@, which
does not depend on the temperature, but does the
spectral density of the reservoir boson. The beat
frequency in the Ohmic-model is approximately
determined by a factor f, = 4a,€2..

The accelerated decoherence seen in Fig. 1 is the
manifestation of the entanglement between the
qubits. Now we evaluate this entanglement by using
the Peres criterion [7] in the case of two qubits.
Actually the necessary and sufficient criterion for
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Fig. 1. The decay curve of the macroscopic polarization
normalized at ¢ =0 in the case of L qubits and the Ohmic
reservoir model. The solid, broken, and dash—dot—dot lines are
the calculated results for a single, 2, and 20 qubits, respectively.
Parameters are a, =0.1, Q. =10meV, T =5K. The beat
frequency is f,~4meV.
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Fig. 2. The time evolution of the normalized polarization (solid
line) and the entanglement (broken line) of two qubits. The
reservoir model and its parameters are the same as Fig. 1.

the entanglement is known only for qubit—qubit and
qubit—qutrit systems [8]. In the case of two-qubit,
the entanglement measure ¢(p) is defined as

Wp)=-2) 7. ®)

based on the negativity of the partial transposition
of states, where A; describes a negative eigenvalue
of the partial transposed matrix p°'. The qubits are
separable states for &(p) =0, and maximally en-
tangled states for ¢(p) = 1. Fig. 2 shows the time
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evolution of the entanglement (dashed line) and
polarization decoherence (solid line) of two qubits
in the case of rjp~0. As seen, the entanglement
measure varies almost in antiphase with the beat
signal of the polarization, and relaxes to separable
states eventually. The entanglement thus induced via
the reservoir does not attain the maximal &(p) = 1,
in principle. In fact, perfect entanglement of the
qubits is possible only when they are completely
isolated from the environment. (This is actually the
principle used for the security proof of quantum
cryptography.) In contrast, the reservoir-induced
entanglement of qubits cannot exist apart from the
coupling to the reservoir. So it is not straightforward
to utilize such an entanglement for quantum
information processing. In Ref. [4], a possibility is
presented which distills perfect entanglement from
many imperfect entangled pairs created via the
reservoir. This will hardly be practical at present.
Rather we will apply the analysis of the reservoir-
induced entanglement of qubits to precise estima-
tion of the reservoir characteristics. But before that,
we should interpret the mechanism of the beat
signal.

The direct origin of the beat signal is the so-
called Lamb phase shift, i.e. the factor given by
Eq. (3b). This factor cancels out in the qubit
density matrix in the case where the qubits couple
independently to separate reservoirs (L =1 in
Fig. 1). In the present case, on the other hand, it
causes a significant effect on the dynamics,
inducing the phase shift depending on the quan-
tum state of qubit array. To see this effect more
explicitly, we set I' = 1 by hand, and extract pure
state component. The state evolution is then
written as |[01) + |10) + exp(41©@(]00) + |11)). Thus
the reservoir induces the relative phase shift
between the anti-parallel and parallel state com-
ponents of qubits.

The beat signal thus caused has some unique
nature. Firstly the decay curve of the collective
polarization as shown in Fig. 1 has the peak
structure whose peak positions are determined by
the factor [, = 4a,€. and the peak width narrows
rapidly as the number of qubits interacting with
the common reservoir bosons increases. This
implies that the peaks will be sharpened as the
temperature is lowered, since the coherence length

of the reservoir will extend at lower temperature
and the number of qubits within the coherence
length will increase. Secondly such a behavior does
not depend on the optical polarization of exciting
pulses, because it is due to the mutual interaction
between the identical qubits, not like the inter-
ference between the degenerate levels of relevant
excitations behind a qubit. Based on these features
one will be able to distinguish the effect of our
interest from other kinds of beat signals encoun-
tered frequently in solid-state systems. Once this
effect is observed, one can evaluate a,Q. from the
peak distance. The cutoff frequency €. itself can
be estimated by the time scale in which the
polarization decays completely at a low-tempera-
ture regime. So the coupling constant a, can be
estimated. Thus one can identify the reservoir
characteristics.

Finally we study the polarization decay in the
two-qubit case, considering the finite distance
between the qubits. Introducing the transit time
‘ty as a measure of the qubit distance as
P - ri2 = Qpts, Eq. (5a) can be rewritten as

|P(2)(t, ts)|2 = c0s%40 exp(—4rI), (9a)
O, =) 0,c0s Q. (9b)
p

Fig. 3 shows the polarization decay curves for tree
kinds of the transit times. As the transit time (the
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Fig. 3. The time evolution of the normalized polarization of
two qubits in the case of n = 0 (solid line), n = 1.0 (broken line),
and n = 2.5 (dash—dot—dot line) in setting t;, = n x Q..
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qubit distance) increases, the period of oscillation
gets longer, and disappears when the qubits are
apart over the coherence length of the reservoir, as
expected. This behavior is also to be tested using
several samples with different qubit densities.

3. Conclusions

We have analyzed the decoherence of multi-
qubit system interacting with a common Ohmic
reservoir. The qubits are entangled by exchanging
the reservoir bosons within the memory time. This
interaction induces the Lamb phase shift on the
qubit array. As a result, the decay curve of the
macroscopic polarization shows the beat signal.
We have quantified the reservoir-induced entan-
glement and show how this can be evaluated by
measuring the polarization decay. This pheno-
menon has never been observed in laboratory.
So it must be put to experimental test. We have

discussed how our analysis can be used to estimate
the reservoir characteristics. To know the reservoir
characteristics is actually the very first step to
design methods of decoherence stabilization for
quantum information processing [6].
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