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The focus of study is to review the FIM statistical behavior in each EKF update and determine its potential in pro-
viding sufficient information about Robotic Localization and Mapping problem with intermittent measurements. We
provide theoretical analysis and prove that the FIM can successfully describe both upper and lower bounds for the state
covariance matrix whenever measurement data is not arrived during robot observations. This approach can give a better
picture on how information are processed in EKF when measurement data is partially unavailable. Some simulation
evaluations are also included to verify our results and consistently demonstrate the expected outcome.
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1. Introduction

Robotics theory and applications has become one of the
researchers interest recently and has been applied widely
in various kinds of approaches. In pursuing the realiza-
tion of an autonomous robot behavior, the Robotic Lo-
calization and Mapping problem or alternatively known as
the Simultaneous Localization and Mapping(SLAM) prob-
lem (1) (2) has been one of the fascinating themes in robotic re-
search. SLAM demonstrates a condition of a robot or multi-
robots whose attempts to localize itself or themselves in an
unknown environment while at the same time incrementally
building knowledge about its surroundings. This information
is expressed in different kinds of ways, which are then used
to achieve several tasks in diverse environments such as in
mining, space exploration, or in hazardous area. See Fig.1
for details illustration about the SLAM problem.

Today, the development about SLAM problem still con-
tinues as there are still a lot of unsolved problem exist e.g
computational cost, data association. Generally, most of the
approaches in probabilistic SLAM can be categorized into
two techniques, which are the parametric and non-parametric
methods. A number of parametric approaches has been pro-
posed such as the Extended Kalman Filter(EKF), Unscented
Kalman Filter(UKF), and H∞ Filter(HF) (3)∼(5). In the other
hand, Histogram Filter and Particle Filter are those methods
which representing the non-parametric techniques. Further
details explanations for these approaches are discussed fur-
ther in some papers and books e.g Thrun et.al (5).

The EKF-SLAM consistency and convergence properties
have been discussed by some literatures (1) (2). According to
them, the state covariance is monotonically decreased for
both stationary and moving robot cases. The EKF incon-
sistency was also explained to describe the source of the
problem. Related to this, CRLB (13) is one of the available
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Fig. 1. SLAM problem

approaches used to demonstrate consistency. Z.Jiang et.al (7)

carried CRLB evaluations for EKF-SLAM to understand the
estimation behavior by considering several conditions. An-
drea (7) studied the general SLAM accuracy with a known map
by analyzing both process and measurement models using
Fisher Information Matrix(FIM). From those results, he at-
tempts to compute the CRLB of the system. He recognized
some covariance bounds that appears to give the same result
for any kind of exteroceptive sensor used in the application.
Recently, B.Bingham (9) determined the performance of Un-
derwater Vehicle and applied CRLB to predict the position-
ing efficiency about the whole system.

A case of EKF-SLAM with intermittent measurement is
proposed in this paper. Based on the Bernoulli process (10) (11) ,
it is possible to gain information about the estimation when-
ever measurement data is not available for some time interval
(18). In probabilistic, these information are accessible through
the system state error covariance. Until now, the intermit-
tent measurements studies are mainly focussed on linear and
networks packet drops. Sinopoli et.al (10) claimed that there
exist an upper and lower bounds of state error covariance and
their results has inspired the research of intermittent measure-
ment. Having these results in hand makes further improve-
ment regarding the information during intermittent measure-
ments e.g works by K.Plarre et.al (11) and S.Kluge (12). S.Kluge
reported that the estimation error will not be bounded if the
initial state covariance, process and measurement errors are
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too big even though there are some relaxations about EKF as-
sumptions. We show analytically the effect of these variables
in this paper.

Unfortunately until today, the investigations of intermit-
tent measurements considering robotic system are very lim-
ited. One of it was demonstrated by Payeur (16). He combines
information provided by Jacobian transformation. Then by
utilizing occupancy grid approach, he explains the condition
when measurement data is partially loss. A scanning strategy
also has been proposed to overcome such a situation in EKF-
SLAM to occupy the system with an appropriate informa-
tion (17). However, none of them have reveals the theoretical
explanations underneath to describe how the system behaves.
With regards to these papers, we propose the analysis using
FIM (13) to unveil clear understanding whenever measurement
data is unavailable in SLAM problem.

Different than most literature reviews concerning about the
analysis based on the Riccati equation(e.g (10)∼(12)), in this pa-
per, we suggest that FIM is a novel approach since it can
explicitly specifies the level of estimation or confidence at a
certain observation time. Up to date, none of the previous
works intended to simulate FIM characteristics for this case.
The amount of information in FIM also relatively sketches
the precision about estimation performance at each update.
If a large amount of information is available, then the esti-
mation result is better. Besides, from our analysis, it can be
conceived that measurement process is very important and
has a significant effect to the estimation (20).

In this paper, we derive the upper and lower bounds of
the updated state error covariance by using FIM during in-
termittent measurement. We have found that based on FIM,
the information is still available during intermittent measure-
ment whether the measurement data is lost for a shorter or
longer time. Concurrently with the estimation, the upper and
lower bounds about the state error covariance are also possi-
ble to obtain. The updated state error covariance never sur-
passed the given bounds whether the measurement data is lost
whether only for one sampling time or more. We also theo-
retically show that the uncertainties are gradually increasing
when measurement data is unavailable. Based on the simu-
lation results, the robot only has its confidence about the es-
timation when measurement data is available. With regards
to the reason stated above, FIM could be an alternative tech-
nique to define the system statistical bounds when intermit-
tent measurement is occurred. Additionally, we guarantee
that CRLB can be evaluated for SLAM problem (14) (15) which
are in contrast to some of previous works.

This paper is structured as follows. Section 2 explains the
EKF-based SLAM algorithm with a brief introduction about
intermittent measurement. Section 3 discusses and analyzes
the estimation whenever there is no arrival of measurement
data at some times. Then, we show that there exist an up-
per and lower state covariance whenever measurement data
is loss. Section 4 describes the simulation results and discus-
sion. Finally, Section 5 concludes our paper.

2. EKF-Based SLAM

The SLAM problem can be best describe by process and
measurement models. The process model describes the kine-
matic movement of the robot while the measurement model
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Fig. 2. Process model(left) and measurement model(right)
of mobile robot localization and mapping problem

defines the behavior of sensors measurement when robot
moving through the unknown environment. These two mod-
els are shown separately in Fig.2.

For process model, we consider a nonlinear discrete-time
dynamical system as follows.

θk+1 = θk + fθ (ωk,vk,δω ,δv) · · · · · · · · · · · · · · · · · (1)

Xr
k+1 = Xr

k +(vk + δv)T cos[θk] · · · · · · · · · · · · · · · · (2)

Yr
k+1 = Yr

k +(vk + δv)T sin[θk] · · · · · · · · · · · · · · · · · (3)

Li
k+1 = Li

k · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (4)

where the robot states∈ R
3 are represented by the mobile

robot pose angle θk, and Xr
k ,Yr

k are the x,y cartesian coordi-
nate of the mobile robot. While, Li

k ∈ R
2m,m = 1,2, ...,N is

each respective landmark location in xi,yi coordinate frame.
Robot turning rate is defined by ωk and its velocity by vk.
δω ,δv are the associated process noise to the mobile robot
turning rate and its velocity respectively. T is the sampling
rate. The process model for the landmarks is unchanged as
the landmarks are assumed to be stationary. We define Xk+1
as the augmented state covariance to include both robot and
landmarks states.

Based on process model, the robot motions are predictable
and we can calculate the robot position at any time by us-
ing any robot proprioceptive sensors such as the encoder.
However, are the calculations referring perfectly to the robot
actual location? In this perspective, probabilistic SLAM
provides a level of certainty about the estimation. In each
robot motions, probabilistic method considers about the dis-
turbances due to robot wheel misalignment and slippage by
incorporating the analysis of state error covariance. The state
error covariance determines the uncertainties of the system.
Essentially, probabilistic SLAM is divided into two parts;
prediction and update stage to comprehend about the system.
This is shown as follow. As we applying EKF-SLAM algo-
rithm, the prediction process is stated by

X̂−
k+1 = F(X̂+

k ,ωk,vk,0,0) (5)

There are no process noise included in the prediction such
that δω = 0,δv = 0 and the initial robot velocity and its an-
gular acceleration are given. X̂−

k+1 ∈ R
3+2m is the estimated

augmented mobile robot and landmarks state with its associ-
ated covariance P−

k+1 ∈ R
3+2m and it is shown by the follow-

ing equation.

P−
k+1 = ∇ frP

+
k ∇ f T

r + ∇ fωvΣk∇ f T
ωv · · · · · · · · · · · · · (6)

Here ∇ fr is the Jacobian evaluated from the mobile robot
motion in (1)-(3), and Σk is the control noise covariance. Pk is
the previous state error covariance. For T = 1, the Jacobian
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for the process model yield the following expression.

∇ fr =

⎡
⎢⎢⎣

1 0 0 0
−vsinθ 1 0 0
vcosθ 0 1 0

0 0 0 In

⎤
⎥⎥⎦ ,∇ fωv =

[
∇gωv

0

]
· · (7)

where ∇ fωv is the linearized process noise. We assume no
process noise for landmarks. Therefore the linearized pro-
cess noise for robot motion is ∇gωv. In is an identity matrix
with an appropriate dimension.

The mobile robot then makes the observations about it sur-
roundings using its exteroceptive sensor and the behavior is
shown by the following equations.

zik+1 = γk+1

[
ri

φi

]

= γk+1

[√
(xi −Xr

k+1)
2 +(yi −Y r

k+1)
2 +vri

arctan
yi−Y r

k+1
xi−Xr

k+1
−θk+1 +vθi

]
· · · (8)

Equation (8) is then linearized and represented by

zik+1 = γk+1HiXk+1 + vriθi (9)

where ri and φi are the relative distance and angle between
robot and any observable landmark. Above equation defines
that the mobile robot keeps measuring relative distance and
angle between itself and any ith landmark with some associ-
ated noises of vri , vθi . Note that we simplify these noises by
vriθi in (9). Furthermore, γk+1 explains the stochastic behav-
ior of measurement data whether it is available or not for a
period of time. This variable relies on the Bernoulli process
and has the following properties.

Pr{γk+1 = 1} = p

Pr{γk+1 = 0} = 1− p

E[γk+1] = E[γ2
k+1] = p

The mobile robot measurements can be represented by us-
ing Jacobian as mentioned by the following equation where
Hi = ∇Hi.

∇Hi =

[
0 − dxk

r − dyk
r

dxk
r

dyk
r

−1 dyk
r2 − dxk

r2 − dyk
r2

dxk
r2

]
· · · · · · (10)

where r =
√

(xi −Xr
k+1)

2 +(yi −Yr
k+1)

2, dxk = xi−Xr
k+1 and

dyk = yi −Yr
k+1. Same as the process model, again the state

error covariance is analyzed to obtain the efficiency about
the estimation after measurement. The updated state error
covariance is represented by below equation.

P+
k+1 = P−

k+1 − γk+1Kk+1∇HiP
−
k+1 · · · · · · · · · · · · · · (11)

where Kk+1 = P−
k+1∇HT

i (∇HiP
−
k+1∇Hi

T + Rk+1)−1. Using
these information, the corrected state update is represented
by

X̂+
k+1 = X̂−

k+1 + γk+1Kk+1(∇HiXk −∇HiX̂
−
k+1) · · · (12)

Both of these models are then going through prediction and
update recursively as long as the robot keep observing its sur-
roundings. In this paper, we are concern to look into the un-
certainties behavior whenever intermittent measurement oc-
curs in SLAM. Thereby, we assume that the data association

are perfectly given and the robot is in a planar environment.
In addition, the same characteristics about above measure-

ment characteristics during intermittent measurement was
also obtained by previous results (10)∼(12) (18). The measurement
innovation defines that whenever measurement data is un-
available, then the estimation is based on the following re-
sult (18).

∇Hi(Xk+1 − X̂k+1) = γk+1Ak+1(Cmk+1 −Vk+1) (13)

where Ci
k+1 and Vk+1 shows the landmarks xi,yi and robot

Xr
k ,Y r

k location respectively. Ak+1 is the linearized measure-
ment matrix and is included in Eq.(10) and Eq.(18) later.
Above equation portrays the resulting characteristics of the
measurement model and agrees that γk+1 shows the statisti-
cal bound of the measurement model. Ak+1 is the Jacobian
for measurement at point A and is shown by

Ak+1 =

[ dxA
rA

dyA
rA

− dyA
r2
A

dxA
r2
A

]
, dxA =

[
xi − xA

] · · · · · · (14)

dyA =
[
yi − yA

]
, rA =

√
dx2

A +dy2
A · · · · · · · · · (15)

2.1 Fisher Information Matrix The FIM which is
the inverse of CRLB (12) (14) emphasizes that the covariance ma-
trix Pk+1 of an unbiased state estimator X̂k+1 has a lower
bound and is given by

Pk+1 = E[(Xk+1 − X̂−
k+1)(Xk+1 − X̂−

k+1)
T ] ≥ J−1

k+1 (16)

Jk is the Fisher Information Matrix (FIM) and hold an equa-
tion as stated below.

Jk+1 = D22
k+1 −D21

k+1(Jk+1 +D11
k+1)

−1D12
k+1 (17)

In a nonlinear case, each element of the above expression is
specified by the following equations.

D11
k+1 = ∇ f T

r Q−1
k ∇ fr

D12
k+1 = −∇ f T

r Q−1
k = [D21

k+1]
T

D22
k+1 = Q−1

k + ∇HT
i R−1

k+1∇Hi

where Qk = ∇ fωvΣk∇ f T
ωv, and ∇ fr defined in (7), and ∇Hk

is already defined in (10). Further substitution of above ele-
ments to (14) and at the same time by utilizing Matrix Inver-
sion Lemma, (14) yields below expression.

Jk+1 = Q−1
k +∇HT

i R−1
k+1∇Hi

−Q−1
k ∇ fr(Jk+1 +∇ f T

k Q−1
k ∇ fr)−1∇ f T

r Q−1
k · · · (18)

= (∇ frJ
−1
k+1∇ f T

r +Qk)−1 +∇HT
i R−1

k+1∇Hi · · · · · · (19)

Under this condition, if a filter achieved the condition in
(16), then the filter is said to be efficient for estimation. For a
given system which posses an initial state covariance P0, the
initial FIM hold the following property, J0 = P−1

0 .
We apply the following lemma’s to support our analysis.

Lemma 1 Let A(> 0),B(> 0). Then the following can be
obtained.

(A+B)−1 = A−1 −A−1BA−1 +A−1B(A+B)−1BA−1 (20)

Proof The proof is similar to S.Kluge et.al (12) and therefore
is omitted in this paper. �
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Lemma 2 Let A(> 0),B(> 0) and both A,B are invertible.
Moreover, A > B. Then the following is achieved.

A−B(A+B+BA−1B)−1B > 0 · · · · · · · · · · · · · · · (21)
Proof As A(> 0),B(> 0) and A > B, then A + B > 0.
Adding BA−1B on both side of A+B > 0 yields

A+B+BA−1B > BA−1B

B−1AB−1 > (A+B+BA−1B)−1

B(A+B+BA−1B)−1B < A

A−B(A+B+BA−1B)−1B > 0 �

Lemma 3 Let A(> 0),B(> 0) ∈ R
(n+2m)×(n+2m) and both

A,B are invertible. Then

(A+B)−1 < A−1 +A−1B(A+B)−1BA−1 (22)

Proof By Matrix Inversion Lemma and factorization, the
above equation can be described by

(A+B)−1 = A−1 −A−1(B−1 +A−1)−1A−1

= A−1 −A−1(B−B[A+B]−1B)A−1

= A−1 −A−1BA−1 +A−1B(A+B)−1BA−1

< A−1 +A−1B(A+B)−1BA−1 �

3. FIM Statistical Bound for SLAM

Following preparations are made to investigate the EKF-
based SLAM efficiency using CRLB. Our paper aids the
analysis for the literatures such as Z.Jiang et.al (7). Neverthe-
less, we refine the uncertainties bound for SLAM under FIM
representation. This information should assist better inter-
pretation whenever a measurement data is missing. To give a
better picture of measurement model, for a mobile robot ob-
serving a landmark at point A, the Jacobian matrix is given
by

HA =
[−e −A A

]
(23)

where

e =
[

0
1

]
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (24)

and the definitions for other elements in A has been given
previously. These variables have same meanings with respect
to (10) and regarding to the observation at a specific point.
Assumption 1 Both of the process and measurement noises
holds the following characteristics.

E

([
wk 0
0 vk

][
wk 0
0 vk

]T
)

=
[
Qk 0
0 Rk

]

where wk is the process noise variance and vk is the measure-
ment noise variance. Qk ≥ 0 and Rk > 0 are the process and
measurement noise covariances respectively.

First, the statistical behavior of CRLB is examined based
on the EKF recursive predictions and updates with reference
to the EKF-SLAM convergence properties (3). By utilizing
(16), the convergence behavior of EKF state error covariance
must satisfy the following order.

Pk > Pk+1 > · · · > Pn

Analogously, this means that Pk > Pk+1 ≥ J−1
k+1. This prop-

erty also explains that FIM can be used to describe the lower
bound of the state error covariance. Even more, as we will
show later on this paper, FIM can be employ to acquire the
upper bound of state error covariance. Hence, FIM suffi-
ciently acts as a tool to evaluate the whole system when-
ever measurement data is intermittently missing during robot
observations about it surroundings. Even more, it also can
demonstrate the system uncertainties at each respective up-
date.

We now present the FIM analysis whenever measurement
data is not arrived. In our approach, we analyze FIM behavior
in each estimation to obtain the upper and lower bound of the
state error covariance. The lower bound is actually described
by CRLB which utilizes FIM to demonstrate a minimum
level that a state error covariance of a filter can achieved. We
affirm this concept by verifying the available information via
Lemma 1,2 and Lemma 3. Even more, through that lemma’s,
we suggest that the upper bound can be resolved. We show
this analysis later on in this paper. Based on (16) and afore-
mentioned definition of intermittent measurement, the FIM
now yield the following expression.

Jk+1 = (∇ frJ
−1
k ∇ f T

r +Qk)−1

+γk+1∇HT
i R−1

k+1∇Hi · · · · · · · · · · · · · · · · · · (25)

where γk+1 described the stochastic behavior of measurement
data arrival at time k + 1.

To visualize more about above expression, consider a sta-
tionary robot observing a landmark at a point for n−times
observations. In this case, the FIM for n−times observations
Jn

k+1 is represented by the following equation.
Jn

k+1 = (∇ frJ
−1
k ∇ f T

r +nQk)−1

+nγk+1∇HT
i R−1

k+1∇Hi · · · · · · · · · · · · · · · · · (26)

Stated above, it can be concluded that the measurement up-
date is very important to the system. If more observations
are being made by the robot without any lost of measurement
data, then the state error covariance will exhibit smaller un-
certainties as more information are available.
Remark 1 Note that observing only a single landmark
n−times is insufficient for the robot to localize itself in an un-
known environment. However, according to S.Huang et.al (2),
this characteristic is important to understand how the estima-
tion is done and in what manner does the measurement data
can improved the estimation at each observation.

Equation (25) is also demonstrates some conditions to be
considered in achieving better results in the case of intermit-
tent measurements.
Proposition 1 If the initial state covariance and both pro-
cess and measurement noises are very big, then the estima-
tion has a very big uncertainties whenever measurement data
is not arrived. The condition become worse if the measure-
ment data is not available for longer time such that

limk→∞J∞ = (P0 +Qk)−1 → 0 ∀k > 0
Proof The comparison test is used to evaluate the propo-
sition. Assume that robot is stationary at point A and starts
observing its surroundings. If no measurement data is avail-
able, then after one update and the next update we have

Jk = (P0 +Qk)−1

Jk+1 = (P0 +Qk +Qk+1)−1 ≡ (P0 + 2Qk)−1
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Assume that process noise has almost same magnitude for
each prediction as mentioned above. As Pk = J−1

k , and k→∞,
we represent above conditions as

limk→∞J∞ = (P0 + kQk)−1 < (P0 + kQk)−1 +HT
i RkHi

As a result, the longer measurement data is unavailable, then
the state error covariance approximating ∞ which means the
estimation is continuously diverges. �

Therefore, in EKF-SLAM, even if a large amount of infor-
mation is required to assist better estimation about the states,
this situation cannot guarantee a better result as initial state
covariance, process and measurement noises still affects the
estimation performance. This proposition implies that inter-
mittent measurement in SLAM may lead to unfavorable cir-
cumstances about the estimation.

Look upon a case when a measurement data is not available
at certain time k(k = 1,2, ...). Notice that based on (25), the
FIM will refer to its previous information as no measurement
data is arrived at a certain time to update the system. Moti-
vated by this condition, we conduct a deterministic study to
derived FIM lower and upper bounds for the system.
Definition 1 For an initial state covariance P0 > 0, there ex-
ist a real random number ρk > 0 and Qk ≥ 0 for each EKF
update such that

ρk = ∇ frP
+
k ∇ f T

r > 0 · · · · · · · · · · · · · · · · · · (27)

Jk(≤ ρk) > 0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (28)

Qk = ∇ fωvΣk∇ f T
ωv ≥ 0 · · · · · · · · · · · · · · · · · (29)

The first definition simply interprets that the state error co-
variance matrix always yields a positive definite matrix in
each update. It is the main property to be analyzed in proba-
bilistic SLAM. Equation (28) is very important to ensure that
at least a solution do exist during estimation. Lastly, (29) is
a definition that the Jacobian of process noise is at least a
positive semidefinite matrix at each time robot moves.
Remark 2 In a situation where Qk is a singular, Qk can be
substituted by Qk +εI for some very small positive ε (12). Such
a case is being considered in most SLAM problem, which as-
sumes that there are almost no process noise for landmarks.
By this setting, Qk becomes a non-singular matrix and there-
fore enabling us to examine the behavior and its effect in the
case of intermittent measurements. We assume that in every
process, the process noise is represented by

Q̄k = ∇ fvω Σk∇ f T
vω + εIn

This equation hold in each respective robot movement unless
otherwise stated.

Applying the Matrix Inversion Lemma to the first term of
the right hand (25), yields the following expressions.

Jk+1 = ρ−1
k −ρ−1

k (ρ−1
k + Q̄−1

k )−1ρ−1
k

+γk+1∇HT
i R−1

k+1∇Hi

= ρ−1
k −ρ−1

k Q̄kρ−1
k + ψk

+γk+1∇HT
i R−1

k+1∇Hi · · · · · · · · · · · · · · · · · · (30)

where ψk = ρ−1
k Q̄k(ρk + Q̄k)−1Q̄kρ−1

k

If the process noise is extremely small and can be ne-
glected, then above result is same to S.Huang (2) especially
for a case of a stationary robot observing a landmark at some
point with an initial state covariance P0(∈R

3+2m) > 0. Based

on their results, when process noise covariance Qk is so small
and can be neglected, then EKF update and its convergence
holds the following criteria.

Jk = P−1
0 + γk∇HT

i R−1
k ∇Hi · · · · · · · · · · · · · · · · · (31)

J−1
n→∞ ≤

[
P0 P0HT

A A−T

A−1HAP0 A−1HAP0AHT
A A−T

]
· · · · · · · (32)

Equation (32) generally defines that if the observations at a
point are made successively, in the limit the state covariance
is converging to the given equation. The assumption of Q k
is small and can be ignored has made S.Huang et.al results
a general conclusion about EKF-SLAM convergence prop-
erties. However, as shown by (30), especially whenever the
process noise covariance has to be considered, then process
noise has a significant effect to the overall estimation. Even
more, the process noise also defines the system state error
covariance boundedness. We now move to investigate fur-
ther about the contribution of these equations to a case of
intermittent measurements.

Based on Assumption 1 and Definition 1, it is understood
that Qk ≥ 0. Besides, FIM must satisfy Jk > 0 to ensure that
there exist a solution to EKF-SLAM. We denote at time k,
the process noise is represented by either one of the follow-
ing. Q̄k to express that it is the maximum process noise co-
variance and Q

k
for the minimum process noise covariance.

These expression equivalently means that the process noise
are not normally distributed and has either highest variance
Q̄k or lowest variance Q

k
.

Lemma 4 Given P0,Qk,Rk > 0. If a measurement data is
missing in the interval of 1 < k < N(2 < N < ∞) time, then
the FIM lower bound and upper bound are shown as follows.

Jk+1 = ρ−1
k + ρ−1

k Q̄k(ρk + Q̄k)−1Q̄kρ−1
k

+γk+1HT
i R−1

k Hi · · · · · · · · · · · · · · · · · · · · · · (33)

J̄k+1 = ρ−1
k −ρ−1

k Q
k
ρ−1

k + γk+1HT
i R−1

k Hi · · · · · (34)
Proof Equation (30) with results from Lemma 2 and
Lemma 3 are applied to investigate the statistical bound of
the state error covariance updates. Convergence results from
S.Huang et.al (2) are also referred to evaluate the update. We
already stated that the FIM will update the information from
measurement data using (30).

Based on Lemma 2 and Lemma 3 and through (30), we ob-
tained a maximum and minimum value of FIM. Note that
Jk > 0 must be satisfied at each update to ensure at least a
solution exist. Besides, from S.Huang et.al (2), if the process
noise is too small such that it can be neglected, then after
recursive update, the estimation converges to the initial state
covariance P0. By making Q̄k = 0 in (30), we obtained that
ρk = P0(refer to (2) for explicit derivation). By this fact, for
P0 > 0 and when Q̄k = 0, then we can conclude that (30)
holds the following property for n−times observations.

Jn→∞ = P0

This properties is preserved in all observations. We then have
the following expression.

Jk+1 > Jk > 0

Thus, the minimum FIM information can be given by the fol-
lowing equation(by means that (30) achieved its minimum
information).
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Jk+1 = ρ−1
k + ρ−1

k Q̄k(ρk + Q̄k)−1Q̄kρ−1
k · · · · · · · (35)

Again Lemma 3 is used to show that there exist an upper
bound of FIM. The right hand side equation in Lemma 3 de-
fine the maximum of information available per observation.
A direct substitution of (30) to the right hand side equation
of Lemma 3 yields the FIM upper bound J̄k+1.

J̄k+1 = ρ−1
k −ρ−1

k Q
k
ρ−1

k · · · · · · · · · · · · · · · · · · · · · (36)

Both (35) and (36) contributes the upper and lower informa-
tion bound for the EKF-SLAM with intermittent measure-
ments. �

Lemma 4 has described the FIM lower and upper bounds
when measurement data is not available. By determining the
possible maximum or minimum of information obtained dur-
ing intermittent measurement, we are able to infer the up-
dated state error covariance condition. These results are more
deterministic than previous findings which helps designer to
comprehend better information about the system(see (10)−(12)

for further details). It seems normal that if when measure-
ment data is missing then FIM acquired previous data to up-
date its current information. However, as we shown in above
lemma, when measurement data is unavailable, FIM does not
refer back to its previous data but is strictly bound to (33) or
(34). This results also agrees with H.Ahmad et.al (18). Be-
sides, process noise covariance characteristics, the updated
state error covariance also depends on the following equation
which has been stated earlier in this paper (18).

∇Hi(Xk+1 − X̂−
k+1) = γk+1Ak+1(Cmk+1 −Vk+1)

For EKF-SLAM, for any given P0 > 0, the state error co-
variance Pk is converging to P0 after sufficient observations
if and only if Q̄k is so small and can be neglected (2). Be-
sides, it has been guaranteed that when the robot is moving,
the convergence results is shown by the addition of P0 and its
associated process noise distribution.

In sequence, now we can declare that the variables in the
right hand side of (30) is useful for us to examine about the
FIM upper and lower bounds at each respective update. Be-
sides, note that if the second and third variables of the right
hand side of (30) are same, then (30) become to (32) which
is approximately turning the estimation to the normal EKF
output. In addition, we now have some information about the
FIM update characteristics. Using relationship of (33)-(34),
we propose that the statistical bounds for FIM are possible.

Now we derive the statistical bounds for the state error co-
variance Pk whenever the measurement data is intermittently
unavailable at k + 1. A condition is also proposed to ensure
that the state error covariance is converging. We show that if
ρk+1 > Q̄k+1 and Q̄k is invertible, then the statistical bounds
are exist. Even though the process noise such as the wheel
misalignment and slippage do not obey normal distribution
and are unknown, designer still able to obtain the robot kine-
matics with probabilistic method under certain knowledge (19).
If the process noise covariance is enormously bigger than the
initial state covariance, then the prediction results in high
uncertainties about the system. Consequently, the estima-
tion become inconsistent and yield erroneous position esti-
mations.
Lemma 5 Given ρk+1 ≥ 0. In EKF-SLAM, if no measure-

ment data is available during robot observations, then the es-
timation is still possible if and only if ρk+1 > Q̄k+1 such that
if Q̄k+1 > P0, then the estimation is insufficient.
Proof The proof can be easily obtained by analyzing the
FIM. Referring to (19), when the stationary robot observes it
surroundings for the first time and then moves, we have the
following expression.

P−1
k = P−1

0 +HT
i R−1

k Hi

By previous results(2), if more observations are made by the
robot such that n → ∞, then Pn→∞ → P0. At the next stage of
k + 1, when the robot moves and due to slippage and other
disturbance, we obtain the following.

P−1
k+1 = (ρk + Q̄k)−1 +HT

i R−1
k+1Hi

where ρk is defined in (28). Based on above, if Q̄k > ρk then
we identify that the state error covariance is not converging
to P0. Instead, it converges to a bigger value than P0 which
depends to the process noise covariance. The result become
worst if process noise is enormously bigger than ρ k and if in-
termittent measurement is occurred during observations, thus
producing erroneous results about the state. If the process
noise is keep increasing or the robot lost capability to sense it
motions, then estimation is impossible. �
Theorem 1 Assume that (29) is satisfied and consider that
both the initial state covariance P0 > 0 and Assumption 1
are satisfied. If a measurement data is not arrived at any
k,1 < k < N,2 < N < ∞ time, then state error covariance
Pk+1 is bounded to the following if and only if ρ k+1 > Q̄k+1.

Pk+1 ≤ Pk+1 ≤ P̄k+1 (37)

such that
Pk+1 = ρk −Q

k
(ρk +Q

k
+Q

k
ρ−1Q

k
)−1Q

k
· · · · · (38)

P̄k+1 = ρk +(Q̄−1
k −ρ−1

k )−1 · · · · · · · · · · · · · · · · · · (39)
In other words, the upper bound of state error covariance up-
date P̄k+1 is shown by J−1

k+1, and the lower bound of state
error covariance update Pk+1 is presented by J̄−1

k+1. In a case
of a stationary robot observing landmarks, if a measurement
data is intermittently missing at 1 < k < N, and if the process
noise Qk is very small, then the upper bound is restricted and
bounded to the amount of previous state error covariance Pk.
Proof The proof is divided into two parts comprising about
the upper and lower bounds of the state error covariance.

( 1 ) (Lower bound for state error covariance)
We attempt to find the maximum value of J̄k for a
given initial state covariance P0 > 0, transition ma-
trix fr and measurement matrix Hi. Assume that
Assumption 1 is satisfied. In other words,

argmin(Pk+1)
P0,Qk ,Rk, fr ,Hi

:= {J̄k+1|∀P0,Qk, fr > 0}

From lemma 2, FIM lower bound J̄k+1 has its maxi-
mum information if the equation become as following.

J̄k+1 = ρ−1
k + ρ−1

k Q
k
(ρk +Q

k
)−1Q

k
ρ−1

k

+γk+1HT
i R−1

k Hi

Now we can determine the state error covariance.
If the measurement data is missing at k + 1-time,
then after some arrangement and by Matrix Inversion
Lemma, we finally obtained that the state error covari-
ance yield the following expression.
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Pk+1 = [ρ−1
k + ρ−1

k Q
k
(ρk +Q

k
)−1Q

k
ρ−1

k ]−1

= ρk −Q
k
(ρk +Q

k
+Q

k
ρ−1Q

k
)−1Q

k
The second term on the right hand side of above equa-
tion can be easily evaluated to ensure Pk+1 always
yields a positive definite. See Lemma 2 in Appendix A
for details.

( 2 ) (Upper bound for state error covariance)
The lower bound of FIM that generates the upper
bound of state error covariance is given by

argmax(P̄k+1)
P0,Q̄k,Rk, fr ,Hi

:= {Jk+1|∀P0,Qk, fr > 0}

With reference to (30) and Lemma 2, we suggest that
the following equation describe the lower bound of
FIM Jk+1.

Jk+1 = ρ−1
k −ρ−1

k Q̄kρ−1
k + γk+1HT

i R−1
k Hi

If measurement data is not arrived at k + 1, then
Jk+1 = ρ−1

k −ρ−1
k Q̄kρ−1

k
Determining the upper state error covariance appar-
ently give us the following result.

P̄k+1 = [ρ−1
k −ρ−1

k Q̄kρ−1
k ]−1

= ρk +(Q̄−1
k −ρ−1

k )−1

q̄−1
k is a pseudo inverse of the process noise such that

there are very small landmarks process noise induced
in the system. The inverse term of the right hand equa-
tion yield a positive definite matrix as the condition of
Pk,Qk > 0 is satisfied in each update. For a case of ex-
tremely big state error covariance and very small pro-
cess error especially for a case of stationary robot, if
measurement data is missing then the statistical bound
of state error covariance is shown only by the sum of
previous state error covariance Pk and process error
Qk.

Hence, the upper P̄k+1 and lower state error covariance Pk+1
are now explicitly indicated by

P̄k+1 = J−1
k+1

Pk+1 = J̄−1
k+1 �

As shown in above Theorem 1, we understand that the state
error covariance update is significantly being affected by the
previous state error covariance and process noise covariance
such that if both terms are big, then the uncertainties is in-
creasing. This results is supported by previous results (10)∼(12) (18)

that gives a statistical determination about the system behav-
ior in intermittent measurement. In addition, even if mea-
surement data is available, P0 and Qk always influencing the
estimation performance. As been explained before, EKF is
asymptotically converges to P0

(2). This result can be obtained
by analyzing (26) without γ existence which shows the nor-
mal EKF update under FIM representation. In this sense, we
found that state covariance update is proportional to initial
state covariance and process noise.

More importantly, designer must consider the system de-
sign especially regarding the process noise covariance and
initial state covariance to satisfy whether Pk > Qk. Compar-
ing above results with the normal EKF without intermittent
measurement data lost, measurement data has an important
role to give sufficient information about the system estima-
tion. Moreover, the FIM lower bound is now explicitly shown

when there are no arrival of measurement data at 1 < k < N.
Considering the best performance update for each obser-

vation in which the measurement data is available at all time,
the state error covariance J̄k+1 should perform consistently as
analyzed by S.Huang et.al (2). In each case of stationary robot
or moving robot, the state error covariance must possess the
same characteristics to their results. Besides, the convergence
properties illustrate the same performance to normal EKF for
a case of very small process noise. See (35) when the process
noise Qk → 0, then the state error covariance is approximat-
ing Pk. The estimation indeed has achieved a desired perfor-
mance level only when robot gained more information from
its observations. This is shown by (19) and Lemma 4 that if
more measurements are made for any instant time k, then the
FIM becomes bigger and can intensively improved the esti-
mation. Besides, we proved that the above proposition coher-
ently guaranteeing EKF convergence as claimed by S.Huang
et.al (2).

Interestingly, if the updated state error covariance shows
the output which is same to the lower bound, then the EKF
becomes optimistic about its estimation. The RMSE result
is important to evaluate whether this is acceptable or else as
such condition is merely the case in real SLAM practices.
This results is also satisfies S.Kluge et.al (12) claims in which
they reported that the convergence is preserved whenever the
initial state covariance and both process and measurement
noises are small. If process noise and the initial state co-
variance are very big, from (38)-(39) it is understood that the
updated state covariance becomes big. Hence result in un-
bounded state estimation.

Above results also depicts that the process noise act as an
important feature that significantly affect the estimation and
consistent with S.Kluge et.al results (12). Proposition 1 has ex-
plained the other variables effects to the system performance.
However, is this characteristic remaining steady even if the
measurement data are lost longer? Can we guarantee the esti-
mation to converge in a case where measurement data are not
arrived for some period of time? Moreover, as each update
consists of added noises, then in a condition where measure-
ment data are lost longer, the state error covariance can result
in erroneous estimation. Put it differently, the uncertainties
are increasing and substantially lead to unstable system be-
havior. We summarized this effect by the following theorem.
Theorem 2 The updated state error covariance is increasing
or decreasing proportionally to the amount of time whenever
the measurement data is not available such that it is increas-
ing by

P̄k+n = ρk +nεk · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (40)
where εk = (Q̄−1

k −ρ−1
k )−1 or it is decreasing by

Pk+n = ρk −nε̄k · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (41)
where ε̄k = Qk(ρk +Qk +Qkρ−1Qk)−1Qk.
Proof The upper bound of the updated state error covari-
ance if a measurement data is lost at k is given by

P̄k+1 = ρk +(Q̄−1
k −ρ−1

k )−1

= ρk + εk

P̄k+2 = ρk + εk +[(Q̄−1
k −ρ−1

k ]−1

≤ ρk + 2εk

The updated state error covariance increase unboundedly if
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there are no arrival of measurement data in longer time such
that if the measurement data is not available for n−times,
then

P̄k+n = ρk +nεk

Similar derivation can be obtained for the second case where
the updated state error covariance yield the following equa-
tion.

Pk+n = ρk −nε̄k �

Hence, it can be summarized that recursive update without
the existence of measurement data can contribute to the un-
reliable estimation especially when it is unavailable for some
period of time.

4. Simulation Results

The above analysis is being examined further in a speci-
fied simulation case. Table 1 shows the simulation parame-
ters which includes several parameters with appropriate di-
mensions. The selection of parameters design such that it
considers the prescribed environment and the robot ability of
measurements. We assume that the landmarks are stationary
and consist of point landmarks when the robot starts observ-
ing the surroundings. We assign some points at 100[s], 500[s]
and 800[s] which the system does not receive any measure-
ments data for a certain time. There are 30[s] measurement
data lost after 100[s], and each 1[s] and 10[s] measurement
lost for each after 500[s] and 800[s] observations respec-
tively.

Table 1. Simulation Parameters

Sampling Time, T 0.1[s]

Process noise,Q 1×10−6

Observation noise,
Rθi ,Rdistancei

Rθi = 0.002, Rdistancei = 0.02

Robot Initial
Covariance Pvv

1×10−2

Landmarks Initial
Covariance Pmm

100

Fig.3 shows the constructed map of both normal EKF and
a case of EKF with intermittent measurements. As expected,
it is observable that for the case of EKF with intermittent
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Fig. 6. Performance between EKF and EKF with Inter-
mittent Measurement when measurement data is lost at
100[s], 500[s] and 800[s] for 30[s], 1[s] and 10[s] re-
spectively. Obviously EKF with Intermittent Measure-
ment shows bigger error whenever measurement data is
unavailable.

measurement, the estimation becomes inconsistent whenever
measurement data is not arrived. A big error is perceived
in the respective update after no measurement data arrived
at above specified time. We observed that after 100[s] where
the robot lost about 30[s] regarding its measurement data, the
estimation are diverging and consequently makes the robot
path erroneous. This is the biggest implications compared to
other specified time and leads to inconsistent estimation for
both robot and landmarks estimations. The results are also
nicely agreed with Proposition 1 stated in previous section.

Considering about the uncertainties, the associated state er-

8 IEEJ Trans. XX, Vol.131, No.6, 2011



Intermittent Measurement in Robotic Localization and Mapping with FIM Statistical Bounds

0 200 400 600 800 1000
0

1

2

3

4

5

6
x 10

7

Time [s]

N
E

E
S

 

 

NEES Normal EKF
NEES EKF with Intermittent Measurement

Fig. 7. NEES evaluation for both EKF and EKF with
Intermittent Measurement. Normal EKF shows better
result.

−200 −100 0 100 200

−50

0

50

100

150

200

250

X coordinate [cm]

Y
 c

oo
rd

in
at

e 
[c

m
]

 

 Vehicle Path
Vehicle Path (Estimation)
Vehicle Path (Estimation with
missing measurements)
Landmark
Landmark (Estimation)
Landmark (Estimation with
missing measurements)

Fig. 8. Constructed map with bigger process noise,
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ror covariances are shown in Fig.4 to demonstrate the robot
and landmarks state covariances. Based on probabilistic
SLAM, if the state error covariance is smaller, then the esti-
mation is improved. Surprisingly and unexpectedly, the EKF
with intermittent measurement state error covariance sur-
passed the normal EKF state error covariance without inter-
mittent measurement. It is noticeable that the state error co-
variance almost reaching but do not exceeds the lower bound
as determined previously in Theorem 1 especially about the
robot state estimations. These characteristics are shown in
Fig.5 for each 100[s], 500[s] and 800[s] measurement data
lost. Fig.5 supports both Theorem 1 and Theorem 2 where
we clearly understand the results when measurement data is
not arrived for 1[s] and more than 1[s]. Based on Fig.5, we
observed that between robot and landmarks state error co-
variance, robot has bigger upper and lower bounds. This is
actually due to landmarks has no process noise and therefore
exhibit less uncertainties than the robot has. However, these
results contradict with the preceding result in Fig.3. Based
on Fig.3, the robot state error covariance for EKF with in-
termittent measurement should be increasing and bigger than
the normal EKF. We expect that this is probably due to EKF
affirms that it has received a sufficient amount of information
when measurement data is unavailable. This is shown by the
lower bound of state error covariance as proposed by (38).
Or in other words, the updated state error covariance refer to
the previous state error covariance with some bounded addi-

tion of uncertainties(refer to (25)). This result also denotes
explicitly that EKF become more optimistic about its estima-
tion.

Fig.6 provides clearer descriptions about above mentioned
conditions. Most of the RMSE in EKF with intermittent
measurement consequently become bigger since there was a
hole in the observations data(see at 100[s], 500[s] and 800[s]
whenever measurement data is missing). Despite of the re-
sults in Figs.4-5, this figure shows the true behavior of esti-
mations. In fact, even if the initial state covariance, process
and measurement noises are small, estimation can diverges
and further attention is needed in such case. Observe that in
this analysis, we obtain PMSE > Pestimate and this condition
proves that EKF with intermittent measurement is optimistic.
The updated state error covariance and the constructed map
are insufficient to describe the estimation. The RMSE evalu-
ation or any additional tools are necessary to view the actual
estimation performance.

The NEES test(Normalized Estimation Error Squared) is
apply to compare the results for both cases. We include
the evaluation in Fig.7. The results absolutely explains that
EKF with intermittent measurement has exhibit inconsis-
tency about it estimation. The estimation errors are grow-
ing especially when measurement data is not arrived. Hence,
we conclude that, in a case of EKF with intermittent mea-
surement, designer must carefully examine the RMSE per-
formance to assess its performance. In an actual system and
environment and due to sensors limitation, it is hard to judge
each observation whether it encompasses appropriate packet
information or else. Relying only to the state error covari-
ance is insufficient as already been enclosed in above results.
Fig.8 shows the effect of bigger initial state covariance, pro-
cess and measurement noises. As expected, the estimation is
erroneous than normal EKF.

Nevertheless, we guarantee that the EKF with intermittent
measurement satisfies the aforementioned upper and lower
bounds despite of its optimistic behavior. The uncertainties
never exceeds these bounds when measurement data is not
available. Furthermore, based on our analysis and simula-
tion results, the upper and lower bounds are determine explic-
itly using the FIM approach. Remark that for bigger process
and measurement noise with bigger initial state covariance,
the results may exhibit erroneous estimation. This condition
must be considered in pursue to design a system that able to
achieve a desired outcome.

5. Conclusion

This paper has presented an analysis of EKF upper and
lower bounds for EKF-based SLAM with intermittent mea-
surement through FIM representation. We showed that by us-
ing FIM, it is possible to determine statistical bounds through
Theorem 1 and Theorem 2, where we understand that the un-
certainties are increasing if measurement data was not avail-
able and never exceeds these bounds. These results are sup-
ported by our numerical results. There were also some cer-
tain conditions to be considered in order to affirm consistent
results with our analysis. We also realized that in a case when
measurement data was unavailable, even though the state er-
ror covariance was small, the estimation could show unex-
pected behavior. We left the evaluation for a real application
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in future research development.
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